极限思想在微积分中的应用
在微积分中的应用。
1、 无穷分割方法下的极限思想
无穷分割方法下的极限思想是微积分思想的重要基础。这种极限思想的实质是通过无数个同维度的无穷小的元素之和去定某些立体的体积、物体的质量和曲边形的面积。定积分的理论来自与求曲边梯形的面积,指的是将曲边梯形看作无数个小梯形的面积之和。这一思想也被应用在求面积、求弧长和求旋转体体积方面。在这一思想影响下,结合相关的解析几何手段和代数方法,产生了直角坐标系下二重积分的定义和求解方法。由此可以看出极限思想为微分学的产生和发展奠定了基础。
2、 无穷大,无穷小方法下的极限思想
通过内接正多边形的面积的极限值求圆的面积,相当于两个相关的变量,一个变量在另一个变量发生变化的过程中,与另一个已知变量之间的差不断减小,从而可以通过这个已知量得到相关变量的最终极限值,这个极限值的概念就是“极限”。