傅里叶变换的定义
f(t)是t的周期函数,如果t满足狄里赫莱条件在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。
则有下图①式成立。称为积分运算f(t)的傅立叶变换,
②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做
F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。