什么叫“不定方程”啊
所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。
不定方程(indeterminate equation)是数论的一个分支,它有着悠久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。
古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969年,莫德尔较系统地总结了这方面的研究成果。
一次不定方程
二元一次不定方程的一般形式为ax+by=c。其中 a,b,c 是整数,ab ≠ 0。此方程有整数解的充分必要条件是a、b的最大公约数整除c。
多元一次
关于整数多元一次不定方程,可以有矩阵解法、程序设计等相关方法辅助求解。
二元二次
二元二次不定方程本质上可以归结为求二次曲线(即圆锥曲线)的有理点或整点问题。
高次
对高于二次的不定方程,相当复杂。当n>2时,x^n+y^n=z^n没有非平凡的整数解 ,即著名的费马大定理,历经3个世纪 ,已由英国数学家安德鲁 ·维尔斯证明完全可以成立。
多元高次不定方程
多元高次不定方程没有一般的解法,任何一种解法都只能解决一些特殊的不定方程,如利用二次
域来讨论一些特殊的不定方程的整数解.常用的解法
⑴代数恒等变形如因式分解、配方、换元等;
⑵不等式估算法利用不等式等方法,确定出方程中某些变量的范围,进而求解;
⑶同余法对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;
⑷构造法构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;
⑸无穷递推法。