> 教育经验 > ∫xarcsinxdx用分部积分法

∫xarcsinxdx用分部积分法

∫xarcsinxdx用分部积分法

解∫xarcsinxdx

=1/2*∫arcsinxdx^2

=1/2*x^2*arcsinx-1/2∫x^2darcsinx

=1/2*x^2*arcsinx-1/2∫x^2/√(1-x^2)dx

令x=sint,那么,

∫x^2/√(1-x^2)dx

=∫(sint)^2/costdsint

=∫(sint)^2dt

=∫(1-cos2t)/2dt

=1/2t-1/4sin2t+C=1/2t-1/2sint*cost+C

又x=sint,则t=arcsinx,cost=√(1-x^2),那么

∫x^2/√(1-x^2)dx=1/2t-1/2sint*cost+C=1/2arcsinx-1/2*x*√(1-x^2)+C

那么∫xarcsinxdx=1/2*x^2*arcsinx-1/2∫x^2/√(1-x^2)dx

=1/2*x^2*arcsinx-1/4arcsinx+1/4*x*√(1-x^2)+C