> 教育经验 > 设三阶实对称矩阵a的特征值为633

设三阶实对称矩阵a的特征值为633

设三阶实对称矩阵a的特征值为633

设3的特征向量(a,b,c)则(1,1,1)(a,b,c)=a+b+c=0,得两个特征向量(1,0,-1),(0,-1,1).所得p=((1,1,1)(1,0,-1)(0,-1,1)),再求p-1p-1Ap=A的相似矩阵

所以有 A = Pdiag(6,3,3)P^-1=4 1 1

1 4 1

1 4 1

特征值方程的一个解是N = exp(λt),也即指数函数;这样,该函数是微分算子d/dt的特征值为λ的特征函数。若λ是负数,称N的演变为指数衰减;若它是正数,则称指数增长。λ的值可以是一个任意复数。因此d/dt的谱是整个复平面。

在这个例子中,算子d/dt作用的空间是单变量可微函数的`空间。该空间有无穷维(因为不是每一个可微函数都可以用有限的基函数的线性组合来表达的)。但是,每个特征值λ所对应的特征空间是一维的。它就是所有形为N = N0exp(λt)的函数的集合。N0是任意常数,也就在t=0的初始数量。